- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Martins, Bruno (2)
-
Amir, Ariel (1)
-
Borges, Luís (1)
-
Callan, Jamie (1)
-
Cruz, Isabel F. (1)
-
Ho, Po-Yi (1)
-
Martins, Bruno M.C. (1)
-
Mirrezaei, Seyed Iman (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
Hiemstra, D. (1)
-
Moens, MF. (1)
-
Mothe, J. (1)
-
Perego, R. (1)
-
Potthast, M. (1)
-
Sebastiani, F. (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Hiemstra, D.; Moens, MF.; Mothe, J.; Perego, R.; Potthast, M.; Sebastiani, F. (Ed.)Our work aimed at experimentally assessing the benefits of model ensembling within the context of neural methods for passage re-ranking. Starting from relatively standard neural models, we use a previous technique named Fast Geometric Ensembling to generate multiple model instances from particular training schedules, then focusing or attention on different types of approaches for combining the results from the multiple model instances (e.g., averaging the ranking scores, using fusion methods from the IR literature, or using supervised learning-to-rank). Tests with the MS-MARCO dataset show that model ensembling can indeed benefit the ranking quality, particularly with supervised learning-to-rank although also with unsupervised rank aggregation.more » « less
-
Ho, Po-Yi; Martins, Bruno M.C.; Amir, Ariel (, Biophysical Journal)
-
Mirrezaei, Seyed Iman; Martins, Bruno; Cruz, Isabel F. (, 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems)This paper describes TRIPLEX-ST, a novel information extraction system for collecting spatio-temporal information from textual resources. TRIPLEX-ST is based on a distantly supervised approach, which leverages rich linguistic annotations together with information in existing knowledge bases. In particular, we leverage triples associated with temporal and/or spatial contexts, e.g., as available from the YAGO knowledge base, so as to infer templates that capture new facts from previously unseen sentences.more » « less
An official website of the United States government
